top of page
Search
brittanraste

Intel Graphics Media Accelerator 3000 Drivers For Mac: Compatible Models and System Requirements



The original architecture of GMA systems supported only a few functions in hardware, and relied on the host CPU to handle at least some of the graphics pipeline, further decreasing performance. However, with the introduction of Intel's 4th generation of GMA architecture (GMA X3000) in 2006, many of the functions are now built into the hardware, providing an increase in performance. The 4th generation of GMA combines fixed function capabilities with a threaded array of programmable executions units, providing advantages to both graphics and video performance. Many of the advantages of the new GMA architecture come from the ability to flexibly switch as needed between executing graphics-related tasks or video-related tasks. While GMA performance has been widely criticized in the past as being too slow for computer games, sometimes being derogatorily nicknamed Intel 'GMD' (Graphics Media Decelerator) and being essentially referred to as the world's first "graphics decelerator" since the low-performing S3 ViRGE, the latest GMA generation should ease many of those concerns for the casual gamer.


The 946GZ, Q963 and Q965 chipsets use the GMA 3000 graphics core.[5][6] The GMA 3000 3D core is very different from the X3000, despite their similar names. It is based more directly on the previous generation GMA 900 and GMA 950 graphics, and belonging to the same "i915" family with them. It has pixel and vertex shaders which only support Shader Model 2.0b features,[citation needed] and the vertex shaders are still software-emulated. In addition, hardware video acceleration such as hardware-based iDCT computation, ProcAmp (video stream independent color correction), and VC-1 decoding are not implemented in hardware. Of the GMA 3000-equipped chipsets, only the Q965 retains dual independent display support. The core speed is rated at 400 MHz with 1.6 Gpixel/s fill rate in datasheets, but was listed as 667 MHz core in the white paper.[7]




Intel Graphics Media Accelerator 3000 Drivers For Mac




GMA X3500 is an upgrade of the GMA X3000 and used in the desktop G35. The shaders support shader model 4.0 features. Architecturally, the GMA X3500 is very similar to the GMA X3000,[12] with both graphics cores running at 667 MHz. The major difference between them is that the GMA X3500 supports Shader Model 4.0 and DirectX 10, whereas the earlier X3000 supports Shader Model 3.0 and DirectX 9.[12] The X3500 also adds hardware-assistance for playback of VC-1 video.


Intel describes this as "a flexible, programmable architecture that supports shader-based technology, 2D, 3D and advanced 3D graphics, high-definition video decode, and image processing. Features include screen tiling, internal true color processing, zero overhead anti-aliasing, programmable shader 3D accelerator, and 32-bit floating-point operations."[28]


Apple removed the 64-bit GMA X3100 drivers later, and thus affected Macs were forced back to the 32-bit kernel despite being 64-bit clean in terms of hardware and firmware. No 64-bit drivers were offered in OS X Lion. Subsequently, OS X Mountain Lion dropped 32-bit kernel booting. The combination of these two changes in graphics driver code resulted in many Mac revisions being unable to upgrade to Mountain Lion, as their GPUs cannot be replaced.


In August 2006, Intel added support to the open-source X.Org/XFree86 drivers for the latest 965 series that include the GMA (X)3000 core.[41] These drivers were developed for Intel by Tungsten Graphics.


In May 2007, version 2.0 of the driver (xorg-video-intel) was released, which added support for the 965GM chipset. In addition, the 2.0 driver added native video mode programming support for all chipsets from i830 forward. This version added support for automatic video mode detection and selection, monitor hot plug, dynamic extended and merged desktops and per-monitor screen rotation. These features are built into the X.Org 7.3 X server release and will eventually be supported across most of the open source X.Org video drivers.[42] Version 2.1, released in July 2007, added support for the G33, Q33 and Q35 chipsets.[43] G35 is also supported by the Linux driver.[44]


The drivers were mainly developed by Intel and Tungsten Graphics (under contract) since the chipsets' documentation were not publicly available for a long time. In January 2008, Intel released the complete developer documentation for their, at the time, latest chipsets (965 and G35 chipset), allowing for further external developers' involvement.[46][47]In April 2009, Intel released documentation for their newer G45 graphics (including X4500) chipsets.[48]In May 2009, Intel employee Emma Anholt stated Intel was "still working on getting docs for [8xx] chipsets out."[49]


Intel has released production version drivers for 32-bit and 64-bit Windows Vista that enable the Aero graphics.Intel introduced DirectX 10 for the X3100 and X3500 GPUs in the Vista 15.9 drivers in 2008, though any release of DX10 drivers for the X3000 is uncertain. WDDM 1.1 is supported by X3100 but DXVA-HD is not.


Reviews performed by The Tech Report, by ExtremeTech and by Anandtech all concluded that the AMD's Radeon X1250 integrated graphics solutions based on the AMD 690G chipset was a better choice than the GMA X3000 based on the G965 chipset, especially when considering 3D gaming performance and price.[72][75][76]


But even with that, the Intel 3000 drivers on a Macbook Air (4,1/4,2) will not work properly because of bugs in the linux kernel. See -Air-2 for an explanation of this. The result is that you'll need Linux Kernel version 3.2 to get them fully working.


The Intel HD Graphics 3000 (or Intel Graphics Media Accelerator HD 3000, GMA HD 3000, Intel HD Graphics 200) is an integrated graphics card in the Sandy Bridge codenamed processors. The HD Graphics 3000 has no dedicated memory but shares the Level 3 / LLC Cache with the CPU cores and also part of the main memory. Due to TurboBoost, the GPU can be overclocked depending on the current CPU load and power consumption. The base speed and the turbo boost speed of the HD Graphics 3000 depend on the processor:


OpenGL is an industry standard 3D graphics API. OpenGL 4.1 or later is required to run CityEngine 2022.0. For more information, refer to the CityEngine system requirements. OpenGL drivers are usually installed together with the rest of the graphics driver and support software (such as DirectX).


The original architecture of GMA systems supported only a few functions in hardware, and relied on the host CPU to handle at least some of the graphics pipeline, further decreasing performance. However, with the introduction of Intel's 4th generation of GMA architecture (GMA X3000) in 2006, many of the functions are now built into the hardware, providing an increase in performance. The 4th generation of GMA combines fixed function capabilities with a threaded array of programmable executions units, providing advantages to both graphics and video performance. Many of the advantages of the new GMA architecture come from the ability to flexibly switch as needed between executing graphics-related tasks or video-related tasks. While GMA performance has been widely criticized in the past as being too slow for computer games, the latest GMA generation should ease many of those concerns for the casual gamer.


The 946GZ, Q965, and Q963 chipsets use the GMA 3000 chip.[3][4] The GMA 3000 3D core is very different from the X3000, despite their similar names. It is based more directly on the previous generation GMA 900 and GMA 950 graphics, and belonging to the same "i915" family with them. It has pixel and vertex shaders which only support Shader Model 2.0b features[citation needed], and the vertex shaders are still only software-emulated. In addition, hardware video acceleration such as hardware-based iDCT computation, ProcAmp (video stream independent color correction), and VC-1 decoding are not implemented in hardware. Of the GMA 3000-equipped chipsets, only the Q965 retains dual independent display support. The core speed is rated at 400 MHz with 1.6 Gpixel/s fill rate in datasheets, but was listed as 667 MHz core in the white paper.[5]


Intel describes this as "a flexible, programmable architecture that supports shader-based technology, 2D, 3D and advanced 3D graphics, high-definition video decode, and image processing. Features include screen tiling, internal true color processing, zero overhead anti-aliasing, programmable shader 3D accelerator, and 32-bit floating-point operations."[26]


Apple removed the 64-bit GMA X3100 drivers later, and thus affected Macs were forced back to the 32-bit kernel despite being 64-bit clean in terms of hardware and firmware. No 64-bit drivers were offered in OS X Lion. Subsequently OS X Mountain Lion dropped 32-bit kernel booting. The combination of these two changes in graphics driver code resulted in many Mac revisions being unable to upgrade to Mountain Lion, as their GPUs cannot be replaced.


In August 2006, Intel added support to the open-source X.Org/XFree86 drivers for the latest 965 series that include the GMA (X)3000 core.[38] These drivers were developed for Intel by Tungsten Graphics.[39]


In May 2007, version 2.0 of the driver (xorg-video-intel) was released, which added support for the 965GM chipset. In addition, the 2.0 driver added native video mode programming support for all chipsets from i830 forward. This version added support for automatic video mode detection and selection, monitor hot plug, dynamic extended and merged desktops and per-monitor screen rotation. These features are built into the X.Org 7.3 X server release and will eventually be supported across most of the open source X.Org video drivers.[40] Version 2.1, released in July 2007, added support for the G33, Q33 and Q35 chipsets.[41] G35 is also supported by the Linux driver.[42]


The drivers were mainly developed by Intel and Tungsten Graphics (under contract) since the chipsets' documentation were not publicly available for a long time. In January 2008, Intel released the complete developer documentation for their, at the time, latest chipsets (965 and G35 chipset), allowing for further external developers' involvement.[44][45] In April 2009, Intel released documentation for their newer G45 graphics (including X4500) chipsets.[46] In May 2009, Intel employee Eric Anholt stated Intel was "still working on getting docs for [8xx] chipsets out."[47] 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page